Câu 1. Cho hình hộp ABCD.A’B’C’D’. Gọi N là điểm nằm trên cạnh AB và \(\left( \alpha \right)\) là mặ

Câu 1. Cho hình hộp ABCD.A’B’C’D’. Gọi N là điểm nằm trên cạnh AB và \(\left( \alpha  \right)\) là mặt phẳng đi qua ba điểm D, N, B’.
a) Mặt phẳng \(\left( \alpha  \right)\) cắt hình hộp đã cho theo thiết diện là hình gì?
b) Chứng minh rằng mặt phẳng \(\left( \alpha  \right)\) phân chia khối hộp đã cho thành hai khối đa diện \({H_1}\) và \({H_2}\) bằng nhau.
c) Tính tỉ số thể tích của khối đa diện \({H_1}\) và thể tích của khối tứ diện AA’BD.

Lời Giải:

a) Giả sử \(\left( \alpha  \right) \cap C'D' = E\) thì thiết diện của hình hộp khi cắt bởi \(mp\left( \alpha  \right)\) là tứ giác DNB’E.
Ta có:

\(\left\{ \matrix{
\left( \alpha \right) \cap \left( {ABCD} \right) = DN \hfill \cr
\left( \alpha \right) \cap \left( {A'B'C'D'} \right) = B'E \hfill \cr
\left( {ABCD} \right)\parallel \left( {A'B'C'D'} \right) \hfill \cr} \right. \Rightarrow DN\parallel B'E.\)

Tương tự ta có:

\(\left\{ \matrix{
\left( \alpha \right) \cap \left( {AA'B'B} \right) = {NB'} \hfill \cr
\left( \alpha \right) \cap \left( {CC'D'D} \right) = DE \hfill \cr
\left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right) \hfill \cr} \right. \Rightarrow NB'\parallel DE.\)

Xét tứ giác DNB’E có: DN // B’E, NB’ // DE.
Vậy DNB’E là hình bình hành.
b) \(mp\left( \alpha  \right)\) chia khối hộp thành hai khối đa diện \({H_1}:ADNA'B'ED'\) và \({H_2}:C'B'ECDNB.\)
Gọi O là giao điểm hai đường chéo B’D và NE của hình bình hành DNB’E suy ra O là trung điểm của B’D. Do đó O là tâm hình hộp ABCD.A’B’C’D’.
Gọi \({D_{(O)}}\) là phép đối xứng qua tâm O ta có:

\({D_{(O)}}\): \(A \to C'\)

\(\eqalign{
& N \to E \cr
& B' \to D \cr
& E \to N \cr
& D' \to B \cr
& A' \to C \cr
& D \to B' \cr} \)

\( \Rightarrow \)\({D_{(O)}}\): \(ADNA'B'ED' \to C'B'ECDNB\) hay \({D_{(O)}}\): \({H_1} \to {H_2}.\)

Mà phép đối xứng tâm O là phép dời hình nên \({V_{{H_1}}} = {V_{{H_2}}}.\)
c) Gọi \({V_{ABCD.A'B'C'D'}} = V.\)
Ta có: \({V_{AA'BD}} = {V_{A'.ABD}}.\)

\({S_{\Delta ABD}} = {1 \over 2}{S_{ABCD}} \Rightarrow {V_{A'.ABD}} = {1 \over 3}AA'.{S_{\Delta ABD}} = {1 \over 3}.AA'.{1 \over 2}{S_{ABCD}} = {1 \over 6}{V_{ABCD.A'B'C'D'}} = {V \over 6}.\)

Mà \({V_{{H_1}}} = {V_{{H_2}}} = {V \over 2}.\)

Suy ra \({{{V_{{H_1}}}} \over {{V_{AA'BD}}}} = {{{V \over 2}} \over {{V \over 6}}} = 3.\)