Câu 2. Trong không gian tọa độ Oxyz cho các điểm A(2; 0; 0), A’(6; 0; 0), B(0; 3; 0), B’(0 ;4; 0), C

Câu 2. Trong không gian tọa độ Oxyz cho các điểm A(2; 0; 0), A’(6; 0; 0), B(0; 3; 0), B’(0 ;4; 0), C(0; 0; 4), C’(0; 0; 3).

a) Viết phương trình mặt cầu đi qua 4 điểm A, A’, B, C. Chứng minh rằng B’ và C’ cũng nằm trên mặt cầu đó.

b) Chứng minh rằng trực tâm H của tam giác ABC, trọng tâm G của tam giác A’B’C’ cùng nằm trên một đường thẳng đi qua O. Viết phương trình đường thẳng đó.

c) Tính khoảng cách từ điểm O tới giao tuyến của mp(ABC’) và mp(A’B’C).

Lời Giải:

a) Gọi phương trình mặt cầu đi qua 4 điểm A, A’, B, C là \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\)

\(\left( {{a^2} + {b^2} + {c^2} > 0,{a^2} + {b^2} + {c^2} > d} \right)\)

Khi đó tọa độ các điểm A, A’, B, C phải thỏa mãn phương trình mặt cầu nên ta có hệ:

\(\left\{ \matrix{
4 - 4a + d = 0 \hfill \cr
36 - 12a + d = 0 \hfill \cr
9 - 6b + d = 0 \hfill \cr
16 - 8c + d = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a = 4 \hfill \cr
b = {7 \over 2} \hfill \cr
c = {7 \over 2} \hfill \cr
d = 12 \hfill \cr} \right.\,\,\left( {tm} \right)\)

Vậy phương trình mặt cầu cần tìm là:\(\left( S \right):{x^2} + {y^2} + {z^2} - 8x - 7y - 7z + 12 = 0\,\,\left( * \right).\)

Thay tọa độ của điểm B’ vào (*) ta có: \(16 - 7.4 + 12 = 0 \Rightarrow B' \in \left( S \right)\)

Thay tọa độ của điểm C’ vào (*) ta có: \(9 - 7.3 + 12 = 0 \Rightarrow C' \in \left( S \right).\)

Gọi G là trọng tâm của tam giác A’B’C’ ta có: \(G\left( {2,{4 \over 3},1} \right).\)

\( \Rightarrow \overrightarrow {OG}  = \left( {2,{4 \over 3},1} \right) = {1 \over 3}\left( {6,4,3} \right).\)

Đường thẳng d đi qua O, G nhận \(\overrightarrow u  = \left( {6;4;3} \right)\) là 1 vectơ chỉ phương.
Phương trình tham số của d là

\(\left\{ \matrix{
x = 6t \hfill \cr
y = 4t \hfill \cr
z = 3t \hfill \cr} \right.\)

Gọi H(x, y, z) là trực tâm của tam giác ABC ta có:

\(\left\{ \matrix{
\overrightarrow {AH} .\overrightarrow {BC} = 0 \hfill \cr
\overrightarrow {BH} .\overrightarrow {AC} = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
\left( {x - 2,y,z} \right).\left( {0, - 3,4} \right) = 0 \hfill \cr
\left( {x,y - 3,z} \right).\left( { - 2,0,4} \right) = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
- 3y + 4z = 0 \hfill \cr
- 2x + 4z = 0 \hfill \cr} \right. \Leftrightarrow 2x = 3y = 4z.\)

Đặt \(2x = 3y = 4z = 12a \Rightarrow x = 6a,y = 4a,z = 3a \Rightarrow H\left( {6a,4a,3a} \right)\)
Rõ ràng khi t = a thì \(H \in \left( d \right) \Rightarrow \)O, H, G cùng nằm trên đường thẳng có phương trình

\(\left\{ \matrix{
x = 6t \hfill \cr
y = 4t \hfill \cr
z = 3t \hfill \cr} \right.\)

c) Ta có:

Mặt phẳng (ABC’) đi qua A và nhận \(\overrightarrow n  = \left( {3,2,2} \right)\) là 1 vectơ pháp tuyến nên (ABC’) có phương trình: \(3\left( {x - 2} \right) + 2\left( {y - 0} \right) + 2\left( {z - 0} \right) = 0 \Leftrightarrow 3x + 2y + 2z - 6 = 0.\)

Tương tự ta có:

Mặt phẳng (A’B’C) đi qua A’ và nhận \(\overrightarrow {n'}  = \left( {2,3,3} \right)\) là 1 vectơ pháp tuyến nên (A’B’C) có phương trình: \(2\left( {x - 6} \right) + 3\left( {y - 0} \right) + 3\left( {z - 0} \right) = 0 \Leftrightarrow 2x + 3y + 3z - 12 = 0.\)
Giao tuyến của 2 mặt phẳng (ABC’) và (A’B’C) là tập hợp tất cả các điểm thỏa mãn hệ phương trình:

\(\left\{ \matrix{
3x + 2y + 2z - 6 = 0 \hfill \cr
2x + 3y + 3z - 12 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
9x + 6y + 6z - 18 = 0 \hfill \cr
4x + 6y + 6z - 24 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
5x + 6 = 0 \hfill \cr
2y + 2z = 6 - 3x \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - {6 \over 5} \hfill \cr
y + z = {{24} \over 5} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - {6 \over 5} \hfill \cr
y = t \hfill \cr
z = {{24} \over 5} - t \hfill \cr} \right.\)

Vậy giao tuyến của hai mặt phẳng (ABC’) và (A’B’C) có phương trình

\(\Delta :\left\{ \matrix{
x = - {6 \over 5} \hfill \cr
y = t \hfill \cr
z = {{24} \over 5} - t \hfill \cr} \right.\).

\(\Delta \) đi qua điểm \(M\left( { - {6 \over 5};0;{{24} \over 5}} \right)\) và có vectơ chỉ phương \({\overrightarrow u _\Delta } = \left( {0,1, - 1} \right).\)

Ta có: \(d\left( {O;\Delta } \right) = {{\left| {\left[ {\overrightarrow {OM} ,{{\overrightarrow u }_\Delta }} \right]} \right|} \over {\left| {{{\overrightarrow u }_\Delta }} \right|}} = {{\sqrt {{{\left( { - {{24} \over 5}} \right)}^2} + {{\left( { - {6 \over 5}} \right)}^2} + {{\left( { - {6 \over 5}} \right)}^2}} } \over {\sqrt {{0^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} = {{{{18\sqrt 2 } \over 5}} \over {\sqrt 2 }} = {{18} \over 5}\)