Câu 44 trang 122 SGK Đại số và Giải tích 11 Nâng cao

Câu 44. Chứng minh rằng

\({1. 2^2} + {2. 3^2} + . . . + \left( {n - 1} \right). {n^2} = {{n\left( {{n^2} - 1} \right)\left( {3n + 2} \right)} \over {12}}\)    (1)

Với mọi số nguyên \(n ≥ 2\)

Giải:

+) Với \(n = 2\) ta có :

\({1. 2^2} = {{2\left( {{2^2} - 1} \right)\left( {3. 2 + 2} \right)} \over {12}} = 4\)

Vậy (1) đúng với \(n = 2\)

+) Giả sử (1) đúng với \(n = k\), tức là ta có :

\({1. 2^2} + {2. 3^2} + . . . + \left( {k - 1} \right){k^2} = {{k\left( {{k^2} - 1} \right)\left( {3k + 2} \right)} \over {12}}\)

+) Ta chứng minh (1) đúng với \(n=k+1\)

\(\eqalign{
& {1. 2^2} + {2. 3^2} + . . . + \left( {k - 1} \right). {k^2} + k. {\left( {k + 1} \right)^2} \cr
& = {{k\left( {{k^2} - 1} \right)\left( {3k + 2} \right)} \over {12}} + k{\left( {k + 1} \right)^2} \cr
& = {{k\left( {k + 1} \right)\left[ {\left( {k - 1} \right)\left( {3k + 2} \right) + 12\left( {k + 1} \right)} \right]} \over {12}} \cr
& = {{k\left( {k + 1} \right)\left( {3{k^2} + 11k + 10} \right)} \over {12}} \cr
& = {{k\left( {k + 1} \right)\left[ { {3k\left( {k + 2} \right)} + 5\left( {k + 2} \right)} \right]} \over {12}} \cr
& = {{\left( {k + 1} \right)\left( {{k^2} + 2k} \right)\left( {3k + 5} \right)} \over {12}} \cr
& = {{\left( {k + 1} \right)\left[ {{{\left( {k + 1} \right)}^2} - 1} \right]\left[ {3\left( {k + 1} \right) + 2} \right]} \over {12}} \cr} \)

Điều đó chứng tỏ (1) đúng với \(n = k + 1\)

Từ các chứng minh trên suy ra (1) đúng với mọi \(n ≥ 2\)